Construction of a Quantum Gas Microscope for Fermionic Atoms

نویسندگان

  • Vinay Venkatesh Ramasesh
  • Martin W. Zwierlein
  • Dennis Freeman
چکیده

This thesis reports the construction of a novel apparatus for experiments with ultracold atoms in optical lattices: the Fermi gas microscope. Improving upon similar designs for bosonic atoms, our Fermi gas microscope has the novel feature of being able to achieve single-site resolved imaging of fermionic atoms in an optical lattice; specifically, we use fermionic potassium-40, sympathetically cooled by bosonic sodium-23. In this thesis, several milestones on the way to achieving single-site resolution are described and documented. First, we have tested and mounted in place the imaging optics necessary for achieving single-site resolution. We set up separate 3D magnetooptical traps for capturing and cooling both Na and K. These species are then trapped simultaneously in a plugged quadrupole magnetic trap and evaporated to degeneracy; we obtain a sodium Bose-Einstein condensate with about a million atoms and a degenerate potassium cloud cooled to colder than 1 μK. Using magnetic transport over a distance of 1 cm, we move the cold cloud of atoms into place under the high-resolution imaging system and capture it in a hybrid magnetic and optical-dipole trap. Further evaporation in this hybrid trap performed by lowering the optical trap depth, and the cooled atoms are immersed in an optical lattice, the setup and calibration of which is also described here. Finally, we cool the atoms with optical molasses beams while in the lattice, with the imaging optics collecting the fluoresence light for high-resolution imaging. With molasses cooling set up, single-site fluoresence imaging of bosons and fermions in the same experimental apparatus is within reach. Thesis Supervisor: Martin W. Zwierlein Title: Professor of Physics

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Quantum Gas Microscope for Fermionic Atoms

This thesis reports the achievement of a two-species apparatus for use in an upcoming experiment with fermionic ultracold atomic gases. First, we describe the construction of a laser system capable of cooling and trapping gaseous lithium-6 atoms in a 3D Magneto-Optical Trap. Second, we discuss the realization of a 2D Magneto-Optical Trap which, in our experiment, acts as a high-flux source of c...

متن کامل

Quantum-gas microscope for fermionic atoms.

We realize a quantum-gas microscope for fermionic ^{40}K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single-atom level. We combine 3D Raman sideband cooling with high-resolution optics to simultaneously cool and image individual atoms with single-lattice-site resolution at a detection fidelity above 95%. The imaging process leaves the atoms...

متن کامل

Thermal versus entanglement entropy: a measurement protocol for fermionic atoms with a quantum gas microscope

We show how to measure the order-two Renyi entropy of many-body states of spinful fermionic atoms in an optical lattice in equilibrium and nonequilibrium situations. The proposed scheme relies on the possibility to produce and couple two copies of the state under investigation, and to measure the occupation number in a siteand spin-resolved manner, e.g. with a quantum gas microscope. Such a pro...

متن کامل

Long-Lived Spin-Orbit-Coupled Degenerate Dipolar Fermi Gas

We describe the creation of a long-lived spin-orbit-coupled gas of quantum degenerate atoms using the most magnetic fermionic element, dysprosium. Spin-orbit coupling arises from a synthetic gauge field created by the adiabatic following of degenerate dressed states composed of optically coupled components of an atomic spin. Because of dysprosium’s large electronic orbital angular momentum and ...

متن کامل

A quantum gas microscope – detecting single atoms in a Hubbard regime optical lattice

Recent years have seen tremendous progress in creating complex atomic many-body quantum systems. One approach is to use macroscopic, effectively thermodynamic ensembles of ultracold atoms to create quantum gases and strongly correlated states of matter, and to analyze the bulk properties of the ensemble. For example, bosonic and fermionic atoms in a Hubbard regime optical lattice 1, 2, 3, 4, 5 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013